HEAT EXCHANGERS

PURPOSE

- * A heat exchanger is an apparatus performing heat exchange between two or several fluids. It can carry out this task by:
 - > Segregating the fluids and making them exchange heat through a wall
 - > Mixing them finely. This is direct heat exchange as in cooling towers
 - Using principally radiations as heating medium (furnaces)
 - > Using an intermediary fluid
- Heat exchangers are everywhere in our industry:
 - > Shell and tube heat exhangers to heat up or cool down a feed or a product
 - > Fired heaters
 - > Air coolers
 - Cooling towers
 - Rotating machines anciliaries include heat exchangers to cool down lubrication oil
 - > Pipe tracing
 - Even insulated pipes may be considered as heat exchangers (except one wants to limit heat transfer)

JUST BECAUSE PROCESS CONSIST IN EXCHANGING MASS AND ENERGY

HEAT EXCHANGER OVERVIEW

- Heat exchangers can be sorted in four big families:
 - Shell and Tube type more than 90% of all the application
 - > Air coolers _____
 - > Fired heaters
 - > Special heat exchangers such as:
 - Plate and frame heat exchangers
 - Brazed or welded plate fin heat exchangers
 - Coil wound heat exchanger

COIL WOUND HEAT EXCHANGER

CONVENTIONS IN HEAT TRANSFER

- Upper case terms refer generally to the hot side (the side which cools down)
- Lower case terms refer generally to the cold side (the side which heats up)
- * Cold stream is generally colored in blue
- * Hot stream is generally colored in red
 - C or c is the thermal capacity (kJ/kg or kcal/kg)
 - M or m the mass flow rate (kg/h)
 - > A the heat exchange area (m²)
 - > U the overall transfer coefficient (W/m².°C or kcal/h.m².°C)
 - U can be clean or dirty
- F is the correction factor taking into account the HX technology

PHYSICS

Heat transfer depends on:

- > The thermal gradient T-t
- The transfer coefficients hot fluid side and cold fluid side (film coefficients)
- > The wall material conductivity
- Film coefficients are themselves dependant on:
 - Fluid turbulence (Reynolds number)
 - Thermal physical properties (Prandtl number)

PHYSICS

Total resistance = Σ resistances in series

$$R = \frac{1}{h_{hot}} + \frac{e}{\lambda} + \frac{1}{h_{cold}}$$

In case of cylindrical wall

$$\mathsf{R}_{ext} = \left(\frac{1}{\mathsf{h}_{i}} \cdot \frac{\mathsf{d}_{e}}{\mathsf{d}_{i}}\right) + \left(\frac{\mathsf{d}_{e}}{2\lambda} \cdot \mathsf{Ln} \frac{\mathsf{d}_{e}}{\mathsf{d}_{i}}\right) + \frac{1}{\mathsf{h}_{e}}$$

Rext: total resistance versus external surface (h.m².°C/kcal)

ANALYSIS OF FACTORS INFLUENCING HEAT TRANSFER COEFFICIENTS

- * e/λ wall is very small
- * h coeff depends on
 - > Physical properties of fluid
 - > Flow turbulence
 - > Physical phenomena along with the heat transfer (change of state)

GENERAL LAW

* For a <u>counter-current</u> or <u>co-current</u> heat exchange:

 \rightarrow Q = U A LMTD where Q is the total exchanged heat U is the transfer coefficient A is the heat transfer area LMTD is the Logarithmic Mean **Temperature Difference**

* For other types (1-n, cross flow), the formula becomes: \rightarrow Q = F U A LMTD_{CC}

Q – TOTAL EXCHANGED HEAT

 Q is the enthalpy difference between outlet and inlet for each side multiplied by the mass flow rate

 Q is the same for cold side and hot side (basically one does not take into account the heat losses, which are negligible)

- In case of only sensible heat exchange
 - > $Q=MC\Delta T$ or $Q=mc\Delta t$
- In case of latent heat exchange
 - > Q=m∆Hvap or cond

 Beware in case of a mixture phase change relations are more complex and thermodynamic simulator must be used

LMTD

- For non linear curves (condensation, vaporisation), calculating the LMTD with four points may cause a severe error
- In this case, one should calculate the LMTD with several points
 - > For a pure body in phase change 2 points are sufficient
 - > For a mixture in phase change more points are needed

$$LMTD = \frac{Q_{Total}}{\sum_{n} [Q_{n} / (LMTD)_{n}]}$$

LMTD

Beware taking LMTD with four points may lead to consequent errors:

Example:

 Considering a countercurrent natural gas / cooling water cooler and condenser with the following operating conditions:

$$Q_{T_{otal}} = 2660 \ kW$$

$$T_{C1} = 28^{\circ}C \qquad T_{C2} = 38^{\circ}C$$

$$T_{H1} = 80^{\circ}C \qquad T_{H2} = 40^{\circ}C$$

* As the natural gas is condensing in the heat exchanger, the temperature versus duty curve is not linear as shown below:

LMTD

Calculation Method	LMTD in °C	Absolute Error in °C	Relative Error in %
End points calculation (Linear behaviour)	23.8	0	0
Weighed calculation with $n = 4$	26.0	2.2	9.2
Weighed calculation with $n = 14$	26.2	2.4	10.1

 Note that Process Simulators (Hysys, Pro II) do calculate an integrated LMTD point by point

* F factor depends on the technology of heat exchanger used

- F=1 for pure counter-current or pure co-current heat exchangers
- > For other types F is function of:
 - The thermal efficiency e or E = heat exchanged / heat exchanged if the heat transfer area was infinite
 - The thermal capacity ratio r or R = mc/MC

1-2n HEAT EXCHANGER

DIVIDED FLOW HX

DIVIDED FLOW HX

SPLIT FLOW HX

SPLIT FLOW HX

DOUBLE SPLIT FLOW HX

CROSS FLOW HX

U COEFFICIENT

TABLE 11-3Typical Overall Heat-Transfer Coefficients in Tubular Heat Exchangers $U = Btu/(^{\circ}F \cdot ft^2 \cdot h)$

chall aida	Tubo cido	Design	Includes total	Shall side	Tubo sido	Design	Includes total
Shell side	Tube side	0	anc	Shell side	Tube side	0	ant
Liquid-liquid media		Dowtherm vapor	Dowtherm liquid	80-120	.0015		
Aroclor 1248	Jet fuels	100-150	0.0015	Gas-plant tar	Steam	40-50	.0055
Cutback asphalt	Water	10-20	.01	High-boiling hydrocarbons V	Water	20-50	.003
Demineralized water	Water	300-500	.001	Low-boiling hydrocarbons A	vvater	80-200	.003
Ethanol amine (MEA or	Water or DEA.	140-200	.003	Hydrocarbon vapors (partial	01	20-40	.004
DEA) 10–25% solutions	or MEA solutions			Orrapic solvents A	Water	100-200	003
Fuel oil	Water	15 - 25	.007	Organic solvents A	Water or bring	20 60	.003
Fuel oil	Oil	10-15	.008	Organic solvents ligh NC, A	Water or bring	50-120	.003
Gasoline	Water	60-100	.003	Kerosene	Water	30-65	004
Heavy oils	Heavy oils	10-40	.004	Kerosene	Oil	20-30	.005
Heavy oils	Water	15-50	.005	Naphtha	Water	50-75	.005
Hydrogen-rich reformer	Hydrogen-rich	90-120	.002	Naphtha	Oil	20-30	005
stream	reformer stream			Stabilizer reflux vanors	Water	80-120	003
Kerosene or gas oil	Water	25-50	.005	Steam	Feed water	400-1000	.0005
Kerosene or gas oil	Oil	20-35	.005	Steam	No. 6 fuel oil	15-95	.0055
Kerosene or jet fuels	Trichlorethylene	40-50	.0015	Steam	No. 2 fuel oil	60-90	.0025
Jacket water	Water	230-300	.002	Sulfur dioxide	Water	150-200	.003
Lube oil (low viscosity)	Water	25-50	.002	Tall-oil derivatives vegetable	Water	20-50	.004
Lube oil (high viscosity)	Water	40-80	.003	oils (vapor)		20 00	
Lube oil	Oil	11-20	.006	Water	Aromatic vapor-stream	40-80	.005
Naphtha	Water	50-70	.005		azeotrope		
Naphtha	Oil	25-35	.005		uncorropo		
Organic solvents	Water	50 - 150	.003	Gas-liquid media			
Organic solvents	Brine	35-90	.003				
Organic solvents	Organic solvents	20-60	.002	Air, N ₂ , etc. (compressed)	Water or brine	40-80	.005
Tall oil derivatives, vegetable	Water	20-50	.004	Air, N ₂ , etc., A	Water or brine	10-50	.005
oil, etc.				Water or brine	Air, N ₂ (compressed)	20-40	.005
Water	Caustic soda solutions	100-250	.003	Water or brine	Air, N ₂ , etc., A	5-20	.005
	(10-30%)			water	Hydrogen containing	80-125	.003
Water	Water	200 - 250	.003		natural-gas mixtures		
Wax distillate	Water	15-25	.005		Vaporizers		
Wax distillate	Oil	13-23	.005		vaporizois		
Condensing vapor-liquid media			Anhydrous ammonia	Steam condensing	150-300	.0015	
Alh-l	117-4	100.000	000	Chlorine	Steam condensing	150-300	.0015
Alconol vapor	vvater	100-200	.002	Chiorine	Light heat-transfer	40-60	.0015
Aspnait (450°F.)	Townerm vapor	40-60	.006	December 2 hosters a sta	Oll Otsama and anaime	200, 200	0015
Dowtherm vapor	Tail oil and	60-80	.004	Propane, butane, etc.	Steam condensing	200-300	.0015
	derivatives			Water	Steam condensing	250-400	.0015

NC = noncondensable gas present.

V = vacuum.

A = atmospheric pressure. Dirt (or fouling factor) units are (h · ft² · °F)/Btu. To convert British thermal units per hour-square foot-degrees Fahrenheit to joules per square meter-second-kelvins, multiply by 5.6783; to convert hours per square foot-degree Fahrenheit-British thermal units to square meters per second-kelvin-joules, multiply by 0.1761.

U COEFFICIENT

Typical Overall Heat Transfer Coefficients-U

SHELL AND TUBE EXCHANGERS				
	Coefficient			
Service	Btu/hr.ft ^{2.0} F	$kJ/h \cdot m^2 \cdot C$		
Water Coolers Gas 1-35 bars Gas 35-70 bars Gas over 70 bars Natural Gasoline, LPG MEA Air Water Water Water Condensers Amine regenerator Fractionator overhead Light budrocarbons	35-50 50-80 80-100 70-90 130-150 15-25 170-200 100-110 70-80 85-135	715-1020 1020-1635 1635-2045 1430-1840 2655-3065 305-510 3475-4085 2045-2250 1430-1635 1735-2760		
Light Hydrocarbons Reboilers Steam Hot oil Glycol Amine General Oil-oil Fropane-propane Disk WFA-laap MFA	140-160 90-120 10-20 100-120 80-100 100-130 120-130	2860-3270 1840-2450 205-410 2045-2450 1635-2045 2045-2655 2450-2655		
Gas-gas (<35 bars) Gas-gas (about 70 bars) Gas-propane chiller	50-70 55-75 60-90	1020-1430 1125-1530 1225-1840		
AFRICA	COOLERS			
Condensers Light hydrocarbons MEA Freon	75-90 70-90 70-90	1530-1840 1430-1840 1430-1840		
Coolers Light hydrocarbon liquids Water Lube oil Gas	70-90 100-120 10-20 50-70	1430-1840 2045-2450 205-410 1020-1430		

FOULING

- One has previously seen that
- U, the overall transfer coeff. is
 U = 1/R

- R as written beside does not take into account any dirt that could accumulate on the wall (on both sides) and which could modify the transfer coefficient
- This R leads to the U clean
- Fouling is the results of different phenomenon such as precipitation, sedimentation, chemical reactions, corrosion or biological growth. Fouling is complex, dynamic, and in times degrades the performance of the heat exchanger. Consequently, fouling resistances shall be determined depending on the fluid and then specified in the process datasheet to provide overdesign. Indeed, the heat exchanger is generally oversized for clean operation and barely adequate for conditions just before it should be cleaned.

FOULING

Fouling coefficients must then be added to the overall resistance

Typical values are:

	Fouling factors			
PROCESS FLUIDS	m² °C / W	h ft² / Btu		
Heavy oil	0.00050	0.0028		
Oil	0.00040	0.0023		
Heavy Gas Oil	0.00035	0.0020		
Light Gas Oil	0.00030	0.0017		
Gasoline	0.00020	0.0011		
LPG (liquid)	0.00020	0.0011		
Natural gas	0.00015	0.0009		
Regeneration gas (dryers)	0.00017	0.0010		
Amine solution	0.00040	0.0023		
Glycol	0.00040	0.0023		
Refrigerant (propane or mixed refrigerant)	0.00010	0.0006		
Oily water	0.00030	0.0017		
	Fouling factors			
	m² °C / W	h ft² / Btu		
Sea cooling water	0.00030	0.0017		
River cooling water	0.00040	0.0023		
Fresh (desalinated) cooling water in closed loop	0.00020	0.0011		
Well water	0.00040	0.0023		
Atmospheric air	0.00035	0.0020		
Fuel gas	0.00017	0.0010		
Hot oil	0.00020	0.0009		
Super heated steam	0.00010	0.0006		
Saturated steam / steam condensate	0.00017	0.0010		
Boiler feed water	0.00017	0.0010 70		
nstrument air, Nitrogen	0.00017	0.0010		

FOULING

One should add to the clean heat transfer resistance the following term:

- Where Rs is the fouling resistance
- Rsi the tube internal fouling resistance
- Rse the tube external resistance

Ratio de/di (external tube diameter / internal tube diameter) to refer to the external surface

HEAT TRANSFER COEFFICIENT

- To calculate U, one needs to evaluate h tube side and shell side
- h coefficients are very complex to calculate, especially for the shell side, it depends on:
 - > The physical properties of the fluid
 - > The flow regime (turbulence)
 - > Physical phenomena simultaneous to heat transfer
 - > Heat leaks (for the shell side)
- For the tube side in turbulent flow (Re>10000) and sensible heat exchange:

Nu =
$$\frac{h_i d_i}{\lambda}$$
 = 0,023 Re^{0,8} Pr^{1/3} $\left(\frac{\mu}{\mu_p}\right)^{0,14}$

$$Pr = C\mu/\lambda$$

HEAT TRANSFER COEFFICIENT SHELL SIDE

 Transfert coefficient for a monophasic stream flowing transversaly a bundle of tubes is: Nu = a Re^{1/3} Pr^{-1/3}(μ/μ_p)^{0.14}

Nu gives h_e

 Heat transfer coefficient for shell side is:
 h_c=h_e.k_{CH}.k_{BP}.k_{Re} (method Bell)

HEAT TRANSFER COEFFICIENT SHELL SIDE

- Current A is partly useful but less efficient than current A
- Current B is useful
- Current C is completely useless
- Current E is completely useless
- Current F is completely useless but present only on types E, J, K and X
- To reduce current A: reduce baffle tube clearance
- To reduce current C: implement sealing strips
- To reduce current E: reduce baffle shell clearance
- To reduce current F only ways are to change shell type (F, G, H)

HEAT TRANSFER AREA

- * A is the total heat transfer area
- * $A = \pi d_e L$ (external diameter since U is expressed with regards to external surface) if the tubes are bare
- One can increase the surface with special tube design (more expensive)
 - Low fin tubes (area increase factor up to 10)
- One can create nucleation sites to maximise ebullition heat transfer coefficient (Wielland tubes)

SHELL AND TUBE TECHNOLOGY

- Shell and tube HX is the labour horse of chemical engineering
- * Very robust
- Common rudimentary design
- Can be applied for all services
- Can be cleaned (if designed so as to)
- There is a lot of manufacturers
- Completely defined by the TEMA code

TEMA HEAT EXCHANGER

- TEMA (Tubular Exchanger Manufacturer Association) defines shell and tube heat exchanger by a code of three letters (e.g. BEU)
 - > First letter is for the front end type
 - Second letter is for the shell type
 - > Third letter is for the rear end type

- 1. Stationary Head-Channel
- 2. Stationary Head-Bonnet
- 3. Stationary Head Flange-Channel or Bonnet
- 4. Channel cover
- 5. Stationary Head Nozzle
- 6. Stationary Tubesheet
- 7. Tubes
- 8. Shell
- 9. Shell Cover
- 10. Shell Flange-Stationary Head End
- 11. Shell Flange-Rear Head End
- 12. Shell Nozzle
- 13. Shell Cover Flange
- 14. Expansion Joint
- 15. Floating Tubesheet
- 16. Floating Head Cover
- 17. Floating Head Cover Flange
- 18. Floating Head Backing Device
- 19. Split Shear Ring
- 20. Slip-on Backing Flange

- 21. Floating Head Cover-External
- 22. Floating Tubesheet Skirt
- 23. Packing Box
- 24. Packing
- 25. Packing Gland
- 26. Lantern Ring
- 27. Tierods and Spacers
- 28. Transverse Baffles or Support Plates
- 29. Impingement Plate
- 30. Longitudinal Baffle
- 31. Pass Partition
- 32. Vent Connection
- 33. Drain Connection
- 34. Instrument Connection
- 35. Support Saddle
- 36. Lifting Lug
- 37. Support Bracket
- 38. Weir
- 39. Liquid Level Connection

ADVANTAGES:

 Easy demantling allows cleaning and inspection without unfastening the tube nozzles

- Two gaskets are required to ensure tightness
- Poor resistance to pressure
- Cost factor higher than B type

ADVANTAGES:

 Easy demantling allows cleaning and inspection without unfastening the tube nozzles

***** DRAWBACKS:

- Two gaskets are required to ensure tightness
- > Poor resistance to pressure
- Cost factor higher than B type

* APPLICATION:

Dirty services with low pressure

ADVANTAGES:

- > Cheap
- Resistance to high pressure due to elliptical design
- > Only one gasket is needed
- ***** DRAWBACKS:
 - Access to tube can only be given after complete nozzle dismantling

* APPLICATION:

- Clean products, which do not need frequent cleaning
- Commonly used with U tubes type

ADVANTAGES:

No more gasket between the tube sheet and the distribution box

DRAWBACKS:

Less pressure resistant than bonnet type

* APPLICATION:

Not really used in oil and gas industry

- Channel has been made by solid forged work or have been completely welded
- Can be used as rear end

- **ADVANTAGES:**
 - > For special closing system
 - > Sustains very high pressure
- **DRAWBACKS:**
 - > Expensive

D TYPE		Ē

ADVANTAGES:

> Cheap

- > Bad distribution
 - Nozzle diameter may be increased
 - Vapour bell may be reuired in case of very high vapour flow rate

ADVANTAGES:

> No longer F current

- Limited to low pressure dropsLeak do exist between the
- Longitudinal baffle and the shell

ADVANTAGES:

- Low shell pressure drop as no baffle
- Efficiency higher than for 1-n apparatus

- Tube length limit due to lack of support (in transversal baffle design, baffles support tubes)
- > Hard to avoid poor distribution

ADVANTAGES:

Low pressure drop

DRAWBACKS:

> Piping more complex

APPLICATION:

 Used when considerable actual flow change occurs

ADVANTAGES:

- > Provide a liquid vapor equilibrium
- High vaporization rate (30 to 40%)

DRAWBACKS:

Bulky and costly

* APPLICATION:

Column reboiler

ADVANTAGES:

- Low pressure drop and provides good tube support, which avoids vibrations
- Efficiency close to that of the counter current

DRAWBACKS:

Costly distribution device

ADVANTAGES:

- Good use of the volume in the shell
- They allow use of double tube sheet
- They ease the cleaning as far as L and N types are concerned for the front end
- Less expensive than floating head

- Can not be used if big temperature difference during the life of the HX
- > Bundle can not be dismantled
- Shell can not be accessed

ADVANTAGES:

Differential expansion are not a problem

DRAWBACKS:

Bad tightness = safety problem

ADVANTAGES:

- Sustain big differential expansion
- > Bundle can be dismantled

- If one pass tube, packing is needed implying risk of leakage
- > It is expensive
- Leakage is not visble
- Bundle not really easy to dismantle

ADVANTAGES:

With regards to S type, bundle removal is easier

T TYPE

***** DRAWBACKS:

Not os many tubes than for tube
S

PULL THROUGH FLOATING HEAD

ADVANTAGES:

- > Low price
- > Easy dismantling
- > No gasket
- Allows high temperature difference

- Reserved to rather clean products
- High speed in the coils may produce erosion

ADVANTAGES:

> Leak can be detected

DRAWBACKS:

> Tightness is not perfect

PACKED FLOATING TUBE SHEET WITH LANTERN RING

PITCH

- Triangular pitch:
 - > More tubes per section
 - > Outside wall is hard to clean
- ✤ Square pitch
 - > Easily cleanable

WHICH FLUID FOR WHICH SIDE

Rule of the thumb for the selection:

- > Dirtier fluid rather in tube side
- > If dirty fluid in the shell side, foresee square pitched
- As much as possible balance the heat transfer coefficient between shell side and tube side
- Viscous liquid should be placed shell side
- > High pressure fluid should be placed tube side
- > Erosive product should be placed tube side

BUNDLE CLEANING

COMPACT HEAT EXCHANGER

- More exchange area per cubic meter. They are:
 - > Plate fin heat exchanger
 - > Core in kettle
 - Coil wound heat exchanger
 - > Plate and frame heat exchanger
 - Spiral heat exchanger

PLATE FIN HEAT EXCHANGER

- Aluminium brazed
- Reserved for very clean services (not dismantable)

CORE IN KETTLE

COIL WOUND HEAT EXCHANGER

- Commonly used for CW / SW heat exchanger
- Cleanable
- Beware of the shear stress: put off line one cell rather reducing flow rate in each cell

Alfa-laval exchanger

<u>Givench water sets</u>: A difference between cleaned and not cleaned surface. Plates ann covered with this layer yellow polymans of oily consistency. Cloits of polymers with mat consistency were found. These clots contain line hard particles of small sizes (diameters less than 1 mm) probably oble or sand.

Alfa-lavial exchanger <u>Quench waterside</u> Mat polymetic sediments may be removed from plate surface by soft paper.

WELDED PLATE HEAT EXCHANGER

 Cross flow (Alfarex or Compabloc)

TEMPERATURE AND PRESSURE LIMITATION

TEMPERATURE & PRESSURE LIMITATION

SPIRAL PLATE HEAT EXCHANGER

- * Q = U A LMTD, F close to 1
- Can be induced draft or forced draft
- Induced
 - Less recirculation
 - Bundle protection
 - Good natural convection
- Forced
 - > Easy access for maintenance
 - Lower power consumption
 - No outlet temperature limitation

INDUCED DRAFT UNIT The induced draft unit gives a steady and durable thermal performance due to the protection of the finned surface against wind, rain and snow by the plenum chamber. The induced draft also ensures a better air distribution, less hot air recirculation, less fouling and lower noise levels at grade.

FORCED DRAFT UNIT The forced draft unit allows an easy access for maintenance to the fans and to the bundles. Furthermore, the fans remain in the cold ambient air.

82

Control Precision	Control device
+/- 10°C	On / Off FAN
+/- 5°C	Automatic or manual Louvers
+/- 3°C	50% Fan with auto- variable blades
+/- 1°C	100% fans with auto-vari. blades
н	Variable speed motor

COOLING TOWER

- The competitor of SW/CW P&F HX and Air cooler
- Used to cool down a semi-opened cooling water loop
- Efficiently used when big difference between dry bulb temperature and wet bulb temperature (not close to the sea)
- Operate with mass transfer and heat transfer together
- * This imply:
 - Losses of water to compensate constantly
 - Pollution of the cooling water by air dust
 - Saturation of the cooling water in gas (corrosion issues)

COOLING TOWER

COOLING TOWER

